Search results for "fractional Laplacian"

showing 9 items of 9 documents

Representation of solutions and large-time behavior for fully nonlocal diffusion equations

2017

Abstract We study the Cauchy problem for a nonlocal heat equation, which is of fractional order both in space and time. We prove four main theorems: (i) a representation formula for classical solutions, (ii) a quantitative decay rate at which the solution tends to the fundamental solution, (iii) optimal L 2 -decay of mild solutions in all dimensions, (iv) L 2 -decay of weak solutions via energy methods. The first result relies on a delicate analysis of the definition of classical solutions. After proving the representation formula we carefully analyze the integral representation to obtain the quantitative decay rates of (ii). Next we use Fourier analysis techniques to obtain the optimal dec…

Riemann-Liouville derivativeRiemann–Liouville derivativenonlocal diffusion01 natural sciencesdecay of solutionssymbols.namesakeMathematics - Analysis of PDEsFundamental solutionFOS: MathematicsInitial value problemApplied mathematics0101 mathematicsMathematicsfundamental solutionSpacetimeApplied Mathematics010102 general mathematicsta111energy inequalityRandom walk010101 applied mathematicsPrimary 35R11 Secondary 45K05 35C15 47G20Fourier analysisNorm (mathematics)Bounded functionsymbolsHeat equationfractional LaplacianAnalysisAnalysis of PDEs (math.AP)
researchProduct

The Calderón problem for the fractional Schrödinger equation

2020

We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.

Approximation propertyDimension (graph theory)35J10Disjoint sets01 natural sciences35J70Domain (mathematical analysis)inversio-ongelmatSchrödinger equationsymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesApplied mathematicsUniqueness0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötNumerical AnalysisCalderón problemApplied Mathematics010102 general mathematicsInverse problem35R30approximation propertyBounded functionsymbolsinverse problem010307 mathematical physicsfractional Laplacianapproksimointi26A33Analysis
researchProduct

The fractional Calderón problem: Low regularity and stability

2017

The Calder\'on problem for the fractional Schr\"odinger equation was introduced in the work \cite{GSU}, which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant $L^p$ or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argumen…

osittaisdifferentiaaliyhtälötMathematical optimizationCaldernón problemLogarithmApproximation propertyApplied Mathematics010102 general mathematicsDuality (optimization)stabilityInverse problem01 natural sciencesStability (probability)inversio-ongelmatSchrödinger equation010101 applied mathematicsSobolev spacesymbols.namesakeMathematics - Analysis of PDEssymbolsApplied mathematicsfractional LaplacianUniqueness0101 mathematicsAnalysisMathematicsNonlinear Analysis
researchProduct

Hitchhiker's guide to the fractional Sobolev spaces

2012

AbstractThis paper deals with the fractional Sobolev spaces Ws,p. We analyze the relations among some of their possible definitions and their role in the trace theory. We prove continuous and compact embeddings, investigating the problem of the extension domains and other regularity results.Most of the results we present here are probably well known to the experts, but we believe that our proofs are original and we do not make use of any interpolation techniques nor pass through the theory of Besov spaces. We also present some counterexamples in non-Lipschitz domains.

Pure mathematicsMathematics(all)General MathematicsMathematical proof01 natural sciencesSobolev inequalityFractional LaplacianSobolev embeddingsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsNehari manifoldMathematicsSobolev spaces for planar domains010102 general mathematicsMathematical analysisFractional Sobolev spacesFractional Sobolev spaces; Gagliardo norm; Fractional Laplacian; Nonlocal energy; Sobolev embeddingsGagliardo normNonlocal energyFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spaceInterpolation spaceAnalysis of PDEs (math.AP)CounterexampleTrace theoryBull. Sci. Math.
researchProduct

Lévy processes in bounded domains: path-wise reflection scenarios and signatures of confinement

2022

We discuss an impact of various (path-wise) reflection-from-the barrier scenarios upon confining properties of a paradigmatic family of symmetric $\alpha $-stable L\'{e}vy processes, whose permanent residence in a finite interval on a line is secured by a two-sided reflection. Depending on the specific reflection "mechanism", the inferred jump-type processes differ in their spectral and statistical characteristics, like e.g. relaxation properties, and functional shapes of invariant (equilibrium, or asymptotic near-equilibrium) probability density functions in the interval. The analysis is carried out in conjunction with attempts to give meaning to the notion of a reflecting L\'{e}vy process…

Statistics and Probabilityreflection scenariosasymptotic pdfs in the intervalpath-wise analysisreflecting boundary dataStatistical Mechanics (cond-mat.stat-mech)Probability (math.PR)General Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)reflecting L´evy processMathematics - Analysis of PDEsModeling and SimulationFOS: Mathematicsfractional LaplacianCondensed Matter - Statistical MechanicsMathematics - ProbabilityMathematical Physicsrandom walk approximationAnalysis of PDEs (math.AP)Journal of Physics A-Mathematical and Theoretical
researchProduct

A DUALITY APPROACH TO THE FRACTIONAL LAPLACIAN WITH MEASURE DATA

2011

We describe a duality method to prove both existence and uniqueness of solutions to nonlocal problems like $$(-\Delta)^s v = \mu \quad \text{in } \mathbb{R}^N,$$ ¶ with vanishing conditions at infinity. Here $\mu$ is a bounded Radon measure whose support is compactly contained in $\mathbb{R}^N$, $N\geq2$, and $-(\Delta)^s$ is the fractional Laplace operator of order $s\in (1/2,1)$.

Pure mathematicsGeneral MathematicsDuality (optimization)fractional laplacianmeasure dataExistenceMeasure (mathematics)Duality solutionsFractional LaplacianOrder (group theory)UniquenessMeasure dataMathematicsFractional Laplacian ; Measure data ; Existence ; Uniqueness ; Duality solutions35B40Mathematical analysisexistenceuniquenessduality solutionsBounded function35K55Radon measurefractional laplacian; uniqueness; duality solutions; measure data; existenceUniquenessFractional LaplacianLaplace operator
researchProduct

Mathematical and numerical analysis of initial boundary valueproblem for a linear nonlocal equation

2019

We propose and study a numerical scheme for bounded distributional solutions of the initial boundary value problem for the anomalous diffusion equation ∂t u +Lμu = 0 in a bounded domain supplemented with inhomogeneous boundary conditions. Here Lμ is a class of nonlocal operators including fractional Laplacian. ⃝c 2019 InternationalAssociation forMathematics andComputers in Simulation (IMACS). Published by ElsevierB.V.All rights reserved.

Numerical AnalysisGeneral Computer ScienceAnomalous diffusionApplied MathematicsNumerical analysisMathematical analysisDomain (mathematical analysis)Theoretical Computer ScienceModeling and SimulationScheme (mathematics)Bounded functionFractional Laplacian; Numerical method; Anomalous diffusion equation; Boundary value problemBoundary value problemFractional LaplacianMathematicsMathematics and Computers in Simulation
researchProduct

Unique continuation property and Poincar�� inequality for higher order fractional Laplacians with applications in inverse problems

2020

We prove a unique continuation property for the fractional Laplacian $(-\Delta)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-…

Pure mathematicsControl and Optimizationfractional Schrödinger equationApproximation propertyPoincaré inequalityRadon transform.01 natural sciencesinversio-ongelmatSchrödinger equationsymbols.namesakefractional Poincaré inequalityOperator (computer programming)Mathematics - Analysis of PDEsFOS: MathematicsDiscrete Mathematics and CombinatoricsUniquenesskvanttimekaniikka0101 mathematicsepäyhtälötMathematicsosittaisdifferentiaaliyhtälötPlane (geometry)inverse problemsComputer Science::Information Retrieval010102 general mathematicsOrder (ring theory)Gauge (firearms)Mathematics::Spectral Theoryunique continuationFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisModeling and Simulationsymbolsfractional LaplacianAnalysis35R30 46F12 44A12Analysis of PDEs (math.AP)
researchProduct

The Calderón problem for the fractional wave equation: Uniqueness and optimal stability

2021

We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and stability estimate in the determination of the potential by the exterior Dirichlet-to-Neumann map. The main tools are the qualitative and quantitative unique continuation properties for the fractional Laplacian. For the stability, we also prove that the log type stability estimate is optimal. The log type estimate shows the striking difference between the inverse problems for the fractional and classical wave equations in the stability issue. The results hold for any spatial di…

osittaisdifferentiaaliyhtälötApplied MathematicsnonlocalCalder´on problemfractional wave equationinversio-ongelmatComputational MathematicsperidynamicMathematics - Analysis of PDEslogarithmic stabilityFOS: Mathematicsstrong uniquenessfractional LaplacianRunge approximationAnalysisAnalysis of PDEs (math.AP)
researchProduct