Search results for "fractional Laplacian"
showing 9 items of 9 documents
Representation of solutions and large-time behavior for fully nonlocal diffusion equations
2017
Abstract We study the Cauchy problem for a nonlocal heat equation, which is of fractional order both in space and time. We prove four main theorems: (i) a representation formula for classical solutions, (ii) a quantitative decay rate at which the solution tends to the fundamental solution, (iii) optimal L 2 -decay of mild solutions in all dimensions, (iv) L 2 -decay of weak solutions via energy methods. The first result relies on a delicate analysis of the definition of classical solutions. After proving the representation formula we carefully analyze the integral representation to obtain the quantitative decay rates of (ii). Next we use Fourier analysis techniques to obtain the optimal dec…
The Calderón problem for the fractional Schrödinger equation
2020
We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.
The fractional Calderón problem: Low regularity and stability
2017
The Calder\'on problem for the fractional Schr\"odinger equation was introduced in the work \cite{GSU}, which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant $L^p$ or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argumen…
Hitchhiker's guide to the fractional Sobolev spaces
2012
AbstractThis paper deals with the fractional Sobolev spaces Ws,p. We analyze the relations among some of their possible definitions and their role in the trace theory. We prove continuous and compact embeddings, investigating the problem of the extension domains and other regularity results.Most of the results we present here are probably well known to the experts, but we believe that our proofs are original and we do not make use of any interpolation techniques nor pass through the theory of Besov spaces. We also present some counterexamples in non-Lipschitz domains.
Lévy processes in bounded domains: path-wise reflection scenarios and signatures of confinement
2022
We discuss an impact of various (path-wise) reflection-from-the barrier scenarios upon confining properties of a paradigmatic family of symmetric $\alpha $-stable L\'{e}vy processes, whose permanent residence in a finite interval on a line is secured by a two-sided reflection. Depending on the specific reflection "mechanism", the inferred jump-type processes differ in their spectral and statistical characteristics, like e.g. relaxation properties, and functional shapes of invariant (equilibrium, or asymptotic near-equilibrium) probability density functions in the interval. The analysis is carried out in conjunction with attempts to give meaning to the notion of a reflecting L\'{e}vy process…
A DUALITY APPROACH TO THE FRACTIONAL LAPLACIAN WITH MEASURE DATA
2011
We describe a duality method to prove both existence and uniqueness of solutions to nonlocal problems like $$(-\Delta)^s v = \mu \quad \text{in } \mathbb{R}^N,$$ ¶ with vanishing conditions at infinity. Here $\mu$ is a bounded Radon measure whose support is compactly contained in $\mathbb{R}^N$, $N\geq2$, and $-(\Delta)^s$ is the fractional Laplace operator of order $s\in (1/2,1)$.
Mathematical and numerical analysis of initial boundary valueproblem for a linear nonlocal equation
2019
We propose and study a numerical scheme for bounded distributional solutions of the initial boundary value problem for the anomalous diffusion equation ∂t u +Lμu = 0 in a bounded domain supplemented with inhomogeneous boundary conditions. Here Lμ is a class of nonlocal operators including fractional Laplacian. ⃝c 2019 InternationalAssociation forMathematics andComputers in Simulation (IMACS). Published by ElsevierB.V.All rights reserved.
Unique continuation property and Poincar�� inequality for higher order fractional Laplacians with applications in inverse problems
2020
We prove a unique continuation property for the fractional Laplacian $(-\Delta)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-…
The Calderón problem for the fractional wave equation: Uniqueness and optimal stability
2021
We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and stability estimate in the determination of the potential by the exterior Dirichlet-to-Neumann map. The main tools are the qualitative and quantitative unique continuation properties for the fractional Laplacian. For the stability, we also prove that the log type stability estimate is optimal. The log type estimate shows the striking difference between the inverse problems for the fractional and classical wave equations in the stability issue. The results hold for any spatial di…